New analysis of world-famous 3.46 billion-year-old rocks by researchers from the University of Bristol, the University of Oxford and UWA (the University of Western Australia) is set to finally resolve a long running evolutionary controversy.
The new research, published this week in Proceedings of the National Academy of Sciences USA, shows that structures once thought to be Earth's oldest microfossils do not compare with younger fossil candidates but have, instead, the character of peculiarly shaped minerals.
In 1993, US scientist Bill Schopf described tiny carbon-rich filaments within the 3.46 billion-year-old Apex chert (fine-grained sedimentary rock) from the Pilbara region of Western Australia, which he likened to certain forms of bacteria, including cyanobacteria.
These 'Apex chert microfossils' - between 0.5 and 20 micrometres wide - soon became enshrined in textbooks, museum displays, popular science books and online reference guides as the earliest evidence for life on Earth. In 1996, these structures were even used to test and help refute the case against 'microfossils' in the Martian meteorite ALH 84001.
Even so, their curious colour and complexity gave rise to some early questions. Gravest doubts emerged in 2002, when a team led by Oxford's Professor Martin Brasier (co-author of this current study) revealed that the host rock was not part of a simple sedimentary unit but rather came from a complex, high-temperature hydrothermal vein, with evidence for multiple episodes of subsurface fluid flow over a long time. His team advanced an alternative hypothesis, stating that these curious structures were not true microfossils but pseudofossils formed by the redistribution of carbon around mineral grains during these hydrothermal events.
Although other research teams have since supported the hydrothermal context of Professor Brasier, the 'Apex microfossil' debate has remained hard to resolve because scientific instrumentation has only recently reached the level of resolution needed to map both chemical composition and morphology of these 'microfossils' at the sub-micrometre scale.
link.
No comments:
Post a Comment