Authors:
Hicks et al
Abstract:
Despite the faint young Sun, early Earth might have been kept warm by an atmosphere containing the greenhouse gases CH4 and CO2 in mixing ratios higher than those found on Earth today. Laboratory and modeling studies suggest that an atmosphere containing these trace gases could lead to the formation of organic aerosol haze due to UV photochemistry. Chemical mechanisms proposed to explain haze formation rely on CH4 as the source of carbon and treat CO2 as a source of oxygen only, but this has not previously been verified experimentally. In the present work, we use isotopically labeled precursor gases and unit-mass resolution (UMR) and high-resolution (HR) aerosol mass spectrometry to examine the sources of carbon and oxygen to photochemical aerosol formed in a CH4/CO2/N2 atmosphere. UMR results suggest that CH4 contributes 70–100% of carbon in the aerosol, while HR results constrain the value from 94% to 100%. We also confirm that CO2 contributes approximately 10% of the total mass to the aerosol as oxygen. These results have implications for the geochemical interpretations of inclusions found in Archean rocks on Earth and for the astrobiological potential of other planetary atmospheres.
No comments:
Post a Comment