Hektor - an exceptional D-type family among Jovian Trojans
Authors:
Rozehnal et al
Abstract:
In this work, we analyze Jovian Trojans in the space of suitable resonant elements and we identify clusters of possible collisional origin by two independent methods: the hierarchical clustering and a so-called "randombox". Compared to our previous work (Bro\v{z} and Rozehnal 2011), we study a twice larger sample. Apart from Eurybates, Ennomos and 1996RJ families, we have found three more clusters --- namely families around asteroids (20961)~Arkesilaos, (624)~Hektor in the L4 libration zone and (247341)~2001UV209 in L5. The families fulfill our stringent criteria, i.e. a high statistical significance, an albedo homogeneity and a steeper size-frequency distribution than that of background. In order to understand their nature, we simulate their long term collisional evolution with the Boulder code (Morbidelli et al. 2009) and dynamical evolution using a modified SWIFT integrator (Levison and Duncan, 1994). Within the framework of our evolutionary model, we were able to constrain the the age of the Hektor family to be either 1 to 4 Gyr or, less likely, 0.1 to 2.5 Gyr, depending on initial impact geometry. Since (624) Hektor itself seems to be a bilobed--shape body with a satellite (Marchis et al. 2014), i.e. an exceptional object, we address its association with the D--type family and we demonstrate that the moon and family could be created during a single impact event. We simulated the cratering event using a Smoothed Particle Hydrodynamics (SPH, Benz and Asphaug, 1994). This is also the first case of a family associated with a D--type parent body.
Showing posts with label trojan. Show all posts
Showing posts with label trojan. Show all posts
Thursday, July 21, 2016
Hektor is a Strange D-Type Member of Jovian Trojan Asteroids
Labels:
asteroids,
hektor,
jovian system,
trojan,
trojan point
Thursday, December 03, 2015
The Fate of Asteroids in a Migrating Jupiter Scenario
THE EVOLUTION OF ASTEROIDS IN THE JUMPING-JUPITER MIGRATION MODEL
Authors:
Roig et al
Abstract:
In this work, we investigate the evolution of a primordial belt of asteroids, represented by a large number of massless test particles, under the gravitational effect of migrating Jovian planets in the framework of the jumping-Jupiter model. We perform several simulations considering test particles distributed in the Main Belt, as well as in the Hilda and Trojan groups. The simulations start with Jupiter and Saturn locked in the mutual 3:2 mean motion resonance plus three Neptune-mass planets in a compact orbital configuration. Mutual planetary interactions during migration led one of the Neptunes to be ejected in less than 10 Myr of evolution, causing Jupiter to jump by about 0.3 AU in semimajor axis. This introduces a large-scale instability in the studied populations of small bodies. After the migration phase, the simulations are extended over 4 Gyr, and we compare the final orbital structure of the simulated test particles to the current Main Belt of asteroids with absolute magnitude H less than 9.7. The results indicate that, in order to reproduce the present Main Belt, the primordial belt should have had a distribution peaked at ~10° in inclination and at ~0.1 in eccentricity. We discuss the implications of this for the Grand Tack model. The results also indicate that neither primordial Hildas, nor Trojans, survive the instability, confirming the idea that such populations must have been implanted from other sources. In particular, we address the possibility of implantation of Hildas and Trojans from the Main Belt population, but find that this contribution should be minor.
Sunday, May 25, 2014
Understanding Uranus' Transient Trojans (? Co-orbitals at least)
Comparative orbital evolution of transient Uranian co-orbitals: exploring the role of ephemeral multibody mean motion resonances
Authors:
de la Fuente Marcos
Abstract:
Uranus has three known co-orbitals: 83982 Crantor (2002 GO9), 2010 EU65 and 2011 QF99. All of them were captured in their current resonant state relatively recently. Here, we perform a comparative analysis of the orbital evolution of these transient co-orbitals to understand better how they got captured in the first place and what makes them dynamically unstable. We also look for additional temporary Uranian co-orbital candidates among known objects. Our N-body simulations show that the long-term stability of 2011 QF99 is controlled by Jupiter and Neptune; it briefly enters the 1:7 mean motion resonance with Jupiter and the 2:1 with Neptune before becoming a Trojan and prior to leaving its tadpole orbit. During these ephemeral two-body mean motion resonance episodes, apsidal corotation resonances are also observed. For known co-orbitals, Saturn is the current source of the main destabilizing force but this is not enough to eject a minor body from the 1:1 commensurability with Uranus. These objects must enter mean motion resonances with Jupiter and Neptune in order to be captured or become passing Centaurs. Asteroid 2010 EU65, a probable visitor from the Oort cloud, may have been stable for several Myr due to its comparatively low eccentricity. Additionally, we propose 2002 VG131 as the first transient quasi-satellite candidate of Uranus. Asteroid 1999 HD12 may signal the edge of Uranus’ co-orbital region. Transient Uranian co-orbitals are often submitted to complex multibody ephemeral mean motion resonances that trigger the switching between resonant co-orbital states, making them dynamically unstable. In addition, we show that the orbital properties and discovery circumstances of known objects can be used to outline a practical strategy by which additional Uranus’ co-orbitals may be found.
Labels:
asteroids,
orbital mechanics,
orbital resonance,
trojan,
uranus
Sunday, March 09, 2014
What's up With Trojan Asteroid Hektor?
The Puzzling Mutual Orbit of the Binary Trojan Asteroid (624) Hektor
Authors:
Marchis et al
Abstract:
Asteroids with satellites are natural laboratories to constrain the formation and evolution of our solar system. The binary Trojan asteroid (624) Hektor is the only known Trojan asteroid to possess a small satellite. Based on W.M. Keck adaptive optics observations, we found a unique and stable orbital solution, which is uncommon in comparison to the orbits of other large multiple asteroid systems studied so far. From lightcurve observations recorded since 1957, we showed that because the large Req=125-km primary may be made of two joint lobes, the moon could be ejecta of the low-velocity encounter, which formed the system. The inferred density of Hektor's system is comparable to the L5 Trojan doublet (617) Patroclus but due to their difference in physical properties and in reflectance spectra, both captured Trojan asteroids could have a different composition and origin.
Sunday, February 23, 2014
Asteroid 2013 ND15: Another Venus Trojan
Asteroid 2013 ND15: Trojan companion to Venus, PHA to the Earth
Authors:
de la Fuente Marcos et al
Abstract:
Venus has three known co-orbitals: (322756) 2001 CK32, 2002 VE68 and 2012 XE133. The first two have absolute magnitudes 18 less than H less than 21. The third one, significantly smaller at H = 23.4 mag, is a recent discovery that signals the probable presence of many other similar objects: small transient companions to Venus that are also potentially hazardous asteroids (PHAs). Here, we study the dynamical evolution of the recently discovered asteroid 2013 ND15. At H = 24.1 mag, this minor body is yet another small Venus co-orbital and PHA, currently close to the Lagrangian point L4 and following the most eccentric path found so far for objects in this group. This transient Trojan will leave the 1:1 mean motion resonance within a few hundred years although it could be a recurrent librator. Due to its high eccentricity (0.6), its dynamics is different from that of the other three known Venus co-orbitals even if they all are near-Earth objects (NEOs). A Monte Carlo simulation that uses the orbital data and discovery circumstances of the four objects as proxies to estimate the current size of this population, indicates that the number of high-eccentricity, low-inclination Venus co-orbital NEOs may have been greatly underestimated by current models. Three out of four known objects were discovered with solar elongation at perigee greater than 135° even if visibility estimates show that less than 4 per cent of these objects are expected to reach perigee at such large elongations. Our calculations suggest that the number of minor bodies with sizes above 150 m currently engaged in co-orbital motion with Venus could be at least one order of magnitude larger than usually thought; the number of smaller bodies could easily be in many thousands. These figures have strong implications on the fraction of existing PHAs that can barely be detected by current surveys. Nearly 70 per cent of the objects discussed here have elongation at perigee
Tuesday, January 21, 2014
Asteroid 2013 ND15 is a Venus Trojan Asteroid
Asteroid 2013 ND15: Trojan companion to Venus, PHA to the Earth
Authors:
de la Fuente Marcos et al
Abstract:
Venus has three known co-orbitals: (322756) 2001 CK32, 2002 VE68 and 2012 XE133. The first two have absolute magnitudes 18 less than H less than 21. The third one, significantly smaller at H = 23.4 mag, is a recent discovery that signals the probable presence of many other similar objects: small transient companions to Venus that are also potentially hazardous asteroids (PHAs). Here, we study the dynamical evolution of the recently discovered asteroid 2013 ND15. At H = 24.1 mag, this minor body is yet another small Venus co-orbital and PHA, currently close to the Lagrangian point L4 and following the most eccentric path found so far for objects in this group. Due to its high eccentricity (0.6), its dynamics is different from that of the other three known Venus co-orbitals even if they all are near-Earth objects (NEOs). A Monte Carlo simulation that uses the orbital data and discovery circumstances of the four objects as proxies to estimate the current size of this population, indicates that the number of high-eccentricity, low-inclination Venus co-orbital NEOs may have been greatly underestimated by current models. Three out of four known objects were discovered with solar elongation at perigee greater than 135 degrees even if visibility estimates show that less than four per cent of these objects are expected to reach perigee at such large elongations. Nearly 70 per cent of the objects discussed here have elongation at perigee < 90 degrees and 65 per cent are prospective PHAs.
Labels:
asteroids,
orbital mechanics,
planetary science,
solar system,
trojan,
venus
Subscribe to:
Posts (Atom)