Friday, July 01, 2011

Antarctica's Glacier Expansion Rate


A painstaking examination of the first direct and detailed climate record from the continental shelves surrounding Antarctica reveals that the last remnant of Antarctic vegetation existed in a tundra landscape on the continent's northern peninsula about 12 million years ago. The research, which was led by researchers at Rice University and Louisiana State University, appears online this week and will be featured on the cover of the July 12 issue of the Proceedings of the National Academy of Sciences.

The new study contains the most detailed reconstruction to date of the climatic history of the Antarctic Peninsula, which has warmed significantly in recent decades. The rapid decline of glaciers along the peninsula has led to widespread speculation about how the rest of the continent's ice sheets will react to rising global temperatures.

"The best way to predict future changes in the behavior of Antarctic ice sheets and their influence on climate is to understand their past," said Rice University marine geologist John Anderson, the study's lead author. The study paints the most detailed picture to date of how the Antarctic Peninsula first succumbed to ice during a prolonged period of global cooling.

In the warmest period in Earth's past 55 million years, Antarctica was ice-free and forested. The continent's vast ice sheets, which today contain more than two-thirds of Earth's freshwater, began forming about 38 million years ago. The Antarctic Peninsula, which juts farther north than the rest of the continent, was the last part of Antarctica to succumb to ice. It's also the part that has experienced the most dramatic warming in recent decades; its mean annual temperatures rose as much as six times faster than mean annual temperatures worldwide.


"There's a longstanding debate about how rapidly glaciation progressed in Antarctica," said Sophie Warny, a Louisiana State University geologist who specializes in palynology (the study of fossilized pollen and spores) and led the palynological reconstruction. "We found that the fossil record was unambiguous; glacial expansion in the Antarctic Peninsula was a long, gradual process that was influenced by atmospheric, tectonic and oceanographic changes."

Warny, her students and colleague Rosemary Askin were able to ascertain the exact species of plants that existed on the peninsula over the past 36 million years after a painstaking, three-year examination of thousands of individual grains of pollen that were preserved in muddy sediments beneath the sea floor just off the coast.

"The pollen record in the sedimentary layers was beautiful, both in its richness and depth," Warny said. "It allowed us to construct a detailed picture of the rapid decline of the forests during the late Eocene -- about 35 million years ago -- and the widespread glaciation that took place in the middle Miocene -- about 13 million years ago."


No comments:

Post a Comment