Diversification of Mammals in Miocene Neogene Spain
Diversification of mammals from the Miocene of Spain
Authors:
Domingo et al
Abstract:
The mammalian fossil record of Spain is long and taxonomically well resolved, offering the most complete record of faunal change for the Neogene of Europe. We evaluated changes in diversification, composition, trophic structure, and size structure of large mammals over the middle and late Miocene with methods applied to this record for the first time, including ordination of fossil localities to improve temporal resolution and estimation of confidence intervals on taxa temporal ranges. By contrast, analysis within the traditional Mammal Neogene (MN) biochronology obscures important aspects of diversification. We used inferred temporal ranges of species and evaluated per capita rates of origination, extinction, diversification, and turnover over 0.5-Myr time intervals.
Three periods of significant faunal change occurred between 12.0 and 5.5 Ma: (1) From 12.0 to 10.5 Ma, elevated origination rates led to an increase in diversity without significant change in ecological structure. Immigrants and geographic-range shifts of species to lower latitudes during an interval of global cooling contributed to these faunal changes. (2) From 9.5 to 7.5 Ma, high extinction rates followed by high origination rates coincided with significant changes in taxonomic composition and ecological structure. These changes represent the Vallesian Crisis, with replacement of a fauna of forest affinities (with frugivores and browsers) by a fauna of open woodlands (with grazers and mixed feeders). (3) From 6.5 to 5.5 Ma, high extinction rates reduced diversity without substantial changes in ecological structure, and large mammal faunas became highly endemic across the northern Mediterranean region. This interval includes the Messinian Salinity Crisis, the desiccation of the Mediterranean basin. Extinction may have been caused by geographic isolation and aridification, with evolution of endemic lineages giving rise to new species in the early Pliocene. These distinct macroevolutionary patterns of faunal change correspond to different geographic scales of inferred climatic and tectonic drivers.
No comments:
Post a Comment