Thursday, December 18, 2014

Is Titan's Sand Dune Patterning an Artifact of Milankovitch Cycles?


Sand dune patterns on Titan controlled by long-term climate cycles

Authors:


Ewing et al

Abstract:

Linear sand dunes cover the equatorial latitudes of Saturn’s moon Titan and are shaped by global wind patterns. These dunes are thought to reflect present-day diurnal, tidal and seasonal winds, but climate models have failed to reproduce observed dune morphologies with these wind patterns. Dunes diagnostic of a specific wind or formative timescale have remained elusive. Here we analyse radar imagery from NASA’s Cassini spacecraft and identify barchan, star and reoriented dunes in sediment-limited regions of Titan’s equatorial dune fields that diverge by 23° on average from the orientation of linear dunes. These morphologies imply shifts in wind direction and sediment availability. Using a numerical model, we estimate that the observed reorientation of dune crests to a change in wind direction would have taken around 3,000 Saturn years (1 Saturn year ∼ 29.4 Earth years) or longer—a timescale that exceeds diurnal, seasonal or tidal cycles. We propose that shifts in winds and sediment availability are the product of long-term climate cycles associated with variations in Saturn’s orbit. Orbitally controlled landscape evolution—also proposed to explain the distribution of Titan’s polar lakes—implies a dune-forming climate on equatorial Titan that is analogous to Earth.

No comments:

Post a Comment