Wednesday, October 28, 2015

Are Iron Isotopes From Archean Deposits Biosignatures?

Does a Heavy Fe-Isotope Composition of Akilia Quartz-Amphibole-Pyroxene Rocks Necessitate a BIF Origin?

Authors:

Whitehouse et al

Abstract:

The age and origin of the quartz-amphibole-pyroxene (qap) gneiss from the island of Akilia, southern West Greenland, have been the subject of intense debate since the light C-isotope composition of graphite inclusions in apatite was interpreted to indicate the presence of Earth's earliest biological activity. Although this claim for biogenic relicts has been vigorously challenged, the possibility that the rocks might represent some of Earth's earliest water-lain sediments and, hence, a suitable repository for life remains an open question. While some workers have suggested that the entire sequence represents an originally mafic-ultramafic igneous precursor subsequently modified by metasomatism, quartz injection, high-grade metamorphism, and extreme ductile deformation, others maintain that at least a small part of the sequence retains geochemical characteristics indicative of a chemical sedimentary origin. Fractionated Fe isotopes with δ56Fe values similar to those observed in Isua BIF have been reported from high-SiO2 units of qap and used to support a chemical sedimentary protolith for the qap unit. Here, we present new Fe isotope data from all lithologic variants in the qap gneiss on Akilia, including layers of undisputed ultramafic igneous origin. Since the latter require introduction of fractionated Fe into at least part of the qap unit, we argue that Fe isotopes must therefore be treated with considerable caution when used to infer BIF for part or all of the qap protolith.

No comments:

Post a Comment