When Felix Fischer of the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) set out to develop nanostructures made of graphene using a new, controlled approach to chemical reactions, the first result was a surprise: spectacular images of individual carbon atoms and the bonds between them.
“We weren’t thinking about making beautiful images; the reactions themselves were the goal,” says Fischer, a staff scientist in Berkeley Lab’s Materials Sciences Division (MSD) and a professor of chemistry at the University of California, Berkeley. “But to really see what was happening at the single-atom level we had to use a uniquely sensitive atomic force microscope in Michael Crommie’s laboratory.” Crommie is an MSD scientist and a professor of physics at UC Berkeley.
What the microscope showed the researchers, says Fischer, “was amazing.” The specific outcomes of the reaction were themselves unexpected, but the visual evidence was even more so. “Nobody has ever taken direct, single-bond-resolved images of individual molecules, right before and immediately after a complex organic reaction,” Fischer says.
The researchers report their results online in the May 30, 2013 edition of Science Express.
Friday, May 31, 2013
Chemical Reaction, Atom by Atom, Bond by Bond
Labels:
chemistry,
LBNL,
material science,
nanotech,
science,
university of california
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment