Supercomputing users are relentless in their pursuit of compute power so they can run simulations of increasing complexity and scale to tackle mankind's truly big problems. But Moore's Law, once a reliable predictor of computing power's future, has reached its limits.
Supercomputing researchers aren't sure what's next.
Today, supercomputing relies on architectural changes, such as adding speedy GPUs, to boost performance. Researchers may increasingly turn to chips that integrate interconnects and memory to speed processing and reduce energy.
But the teams must also wrestle with the enormous costs of building -- and running -- multi-petaflop systems.
"We have reached the end of the technological era," said William Gropp, chairman of the SC13 conference and a computer science professor at the University of Illinois at Urbana-Champaign.
Gropp likened the supercomputer development terrain today to the advent of CMOS (complementary metal oxide semiconductor), the foundation of today's standard semiconductor technology. The arrival of CMOS was disruptive, but it fostered an expansive age of computing.
The problem is "we don't have a technology that is ready to be adopted as a replacement for CMOS," said Gropp. "We don't have anything at the level of maturity that allows you to bet your company on."
link.
No comments:
Post a Comment