Saturday, May 07, 2016

Fracturing and flow: Investigations on the formation of shallow water sills on Europa

Fracturing and flow: Investigations on the formation of shallow water sills on Europa

Authors:

Craft et al

Abstract:

Double ridge tectonic features appear prominently and ubiquitously across the surface of Jupiter's icy moon Europa. Previous studies have interpreted flanking fractures observed along some of the ridges as indicators of stress resulting from the ridge loading and flexing of the ice shell above a shallow water body. Here, we investigate a shallow water sill emplacement process at a time when the shell is cooling and thickening and explore the conditions that would make such a system feasible on timescales of ridge formation. Results show that fracture initiation and transport of ocean water to shallow depths can realistically occur, although horizontal fracturing and sill lifetimes prove challenging. Finite element models demonstrate that mechanical layering or a fractured shell do not provide enough stress change to promote horizontal fracturing, but tidal forcing does result in a small amount of turn. Assuming it is possible for a shallow sill to form, a sill would convect internally and conduct heat out quickly, resulting in a short lifetime in comparison to an estimated flexure timeframe of 100 kyr suggested required for double ridge formation. Consideration of heat transfer and residence in the overlying ice, however, extends the flexure timeframe and multiple sill intrusions or replenishment with warm ocean water could prolong the effective sill lifetime. Though challenges still remain for sill formation at Europa, these analyses constrain the potential mechanisms for emplacement and indicate sills can act as viable options for supplying the heat needed for surface flexure. Further analyses and future missions to Europa will help to increase our understanding of these enigmatic processes.

No comments: