Sunday, April 29, 2018

Orbital ATK Tested a (partially) 3d Printed Hypersonic Warhead

The 50-lb warhead arrived to the test site in the Texas desert in the back of a dust-covered Jeep nestled in an unassuming open, beat-up cardboard box.

Less than 30 minutes later, the warhead exploded from its perch hanging from a couple of 2x4s, driving into the ground below and sending thin metal panels around it — set up to measure fragmentation from the blast — flying backward. A shockwave ripped through the ground and could be felt many hundreds of yards away in a bunker.

When the dust settled, the fragmentation-pocked metal panels lay contorted on the earth and evidence of a warhead test was everywhere including fragmentation embedded deep in random test rigging and the tip of the warhead resting on the ground in the center of the test arena.

“It’s too early to say it’s going to match our model, but it’s what we were expecting,” Richard Truitt, Orbital ATK’s program manager for warhead development programs, told Defense News while surveying the aftermath.

The warhead — designed for hypersonic applications — marks a major first for the company. Three out of five of its major components were made using additive manufacturing. And the March 29 test was the first time Orbital ATK has tested a warhead built partially from 3D-printed materials.

Hypersonic weapons are anything that can exceed Mach 5, which is five times faster than the speed of sound.

The company has developed its Lethality Enhanced Ordnance (LEO) warhead capability and some modeling techniques to help look at fragmentation design on certain target sets, Pat Nolan, vice president and general manager of Orbital ATK’s missile products division, told Defense News in a recent interview before the test.

“Now we’re coupling our rocket motor hypersonic experience with our warhead design experience to design a warhead that can survive at high speeds, high temperatures, when you’re going that fast,” Nolan said before the test. The test will examine what effects the fragmentation will have on various targets.

The warhead went from conception to test in 60 days, according to Truitt. The team began designing the warhead at the start of February, he said, and using additive manufacturing to build a large portion of the components cut out at least a month and a half to manufacture the warhead.

No comments: