Showing posts with label planet x. Show all posts
Showing posts with label planet x. Show all posts

Friday, December 22, 2017

WISE & NEOWISE Cannot Find Planet Nine

A 3pi Search for Planet Nine at 3.4 microns with WISE and NEOWISE

Authors:


Meisner et al

Abstract:
The recent 'Planet Nine' hypothesis has led to many observational and archival searches for this giant planet proposed to orbit the Sun at hundreds of astronomical units. While trans-Neptunian object searches are typically conducted in the optical, models suggest Planet Nine could be self-luminous and potentially bright enough at ~3-5 microns to be detected by the Wide-field Infrared Survey Explorer (WISE). We have previously demonstrated a Planet Nine search methodology based on time-resolved WISE coadds, allowing us to detect moving objects much fainter than would be possible using single-frame extractions. In the present work, we extend our 3.4 micron (W1) search to cover more than three quarters of the sky and incorporate four years of WISE observations spanning a seven year time period. This represents the deepest and widest-area WISE search for Planet Nine to date. We characterize the spatial variation of our survey's sensitivity and rule out the presence of Planet Nine in the parameter space searched at W1 less than 16.7 in high Galactic latitude regions (90% completeness).

Friday, February 03, 2017

systematic is Hunting for Planet Nine

A year ago, last January, Konstantin Batygin and Mike Brown lit up the Internet with their dossier of evidence for Planet Nine. Their conclusion was electrifying: An as-yet undetected super-Earth may be lurking a light week away in an eccentric orbit far beyond Neptune. Their article in the Astronomical Journal generated intense interest, including 311,371 (and counting) downloads of a .pdf containing a bracing dose of secular perturbation theory, along with push notifications from the likes of the New York Times and NPR to devices worldwide.

Friday, December 30, 2016

Where Planet Nine Might be Hiding


Authors:

Millholland et al

Abstract:

A number of authors have proposed that the statistically significant orbital alignment of the most distant Kuiper Belt Objects (KBOs) is evidence of an as-yet undetected planet in the outer solar system, now referred to colloquially a "Planet Nine". Dynamical simulations by Batygin & Brown (2016) have provided constraints on the range of the planet's possible orbits and sky locations. We extend these investigations by exploring the suggestion of Malhotra et al. (2016) that Planet Nine is in small integer ratio mean-motion resonances (MMRs) with several of the most distant KBOs. We show that the observed KBO semi-major axes present a set of commensurabilities with an unseen planet at ∼654 AU (P∼16,725 yr) that has a greater than 98% chance of stemming from a sequence of MMRs rather than from a random distribution. We describe and implement a Monte-Carlo optimization scheme that drives billion-year dynamical integrations of the outer solar system to pinpoint the orbital properties of perturbers that are capable of maintaining the KBOs' apsidal alignment. This optimization exercise suggests that the unseen planet is most consistently represented with mass, m∼6−12M⊕, semi-major axis, a∼654 AU, eccentricity, e∼0.45, inclination, i∼30∘, argument of periastron, ω∼150∘, longitude of ascending node, Ω∼50∘, and mean anomaly, M∼180∘. A range of sky locations relative to this fiducial ephemeris are possible. We find that the region 30∘≲RA≲50∘, −20∘≲Dec≲20∘ is promising.

Friday, December 02, 2016

Hunting for Planet Nine With Wise & NEOWise

Searching for Planet Nine with Coadded WISE and NEOWISE-Reactivation Images

Authors:

Meisner et al

Abstract:
A distant, as yet unseen ninth planet has been invoked to explain various observations of the outer solar system. While such a 'Planet Nine', if it exists, is most likely to be discovered via reflected light in the optical, it may emit much more strongly at 35μm than simple blackbody predictions would suggest, depending on its atmospheric properties (Fortney et al. 2016). As a result, Planet Nine may be detectable at 3.4μm with WISE, but single exposures are too shallow except at relatively small distances (d9430 AU). We develop a method to search for Planet Nine far beyond the W1 single-exposure sensitivity, to distances as large as 800 AU, using inertial coadds of W1 exposures binned into 1 day intervals. We apply our methodology to 2000 square degrees of sky identified by Holman & Payne (2016) as a potentially likely Planet Nine location, based on the Fienga et al. (2016) Cassini ranging analysis. We do not detect a plausible Planet Nine candidate, but are able to derive a detailed completeness curve, ruling out its presence within the parameter space searched at W1<16.66 (90% completeness). Our method uses all publicly available W1 imaging, spanning 2010 January to 2015 December, and will become more sensitive with future NEOWISE-Reactivation releases of additional W1 exposures. We anticipate that our method will be applicable to the entire high Galactic latitude sky, and we will extend our search to that full footprint in the near future.

Friday, November 18, 2016

Planet Nine may be Especially Faint in the red and Infrared


Authors:

Mallama et al

Abstract:

Complete sets of reference magnitudes in all 7 Johnson-Cousins bands (U, B, V, R, I, RC and IC) and the 5 principal Sloan bands (u’, g’, r’, i', and z’) are presented for the 8 planets. These data are accompanied by illumination phase functions and other formulas which characterize the instantaneous brightness of the planets. The main source of Johnson-Cousins magnitudes is a series of individualized photometric studies reported in recent years. Gaps in that dataset were filled with magnitudes synthesized in this study from published spectrophotometry. The planetary Sloan magnitudes, which are established here for the first time, are an average of newly recorded Sloan filter photometry, synthetic magnitudes and values transformed from the Johnson-Cousins system. Geometric albedos derived from these two sets of magnitudes are consistent within each photometric system and between the systems for all planets and in all bands. This consistency validates the albedos themselves as well as the magnitudes from which they were derived. In addition, a quantity termed the delta stellar magnitude is introduced to indicate the difference between the magnitude of a planet and that of its parent star. A table of these delta values for exo-planets possessing a range of physical characteristics is presented. The delta magnitudes are for phase angle 90° where a planet is near the greatest apparent separation from its star. This quantity may be useful in exo-planet detection and observation strategies when an estimate of the signal-to-noise ratio is needed. Likewise, the phase curves presented in this paper can be used for characterizing exo-planets. Finally, magnitudes for the proposed Planet Nine are estimated, and we note that P9 may be especially faint at red and near-IR wavelengths.

Saturday, October 22, 2016

Generation of Highly Inclined Trans-Neptunian Objects by Planet Nine


Authors:

Batygin et al

Abstract:

The trans-Neptunian region of the solar system exhibits an intricate dynamical structure, much of which can be explained by an instability-driven orbital history of the giant planets. However, the origins of a highly inclined, and in certain cases retrograde, population of trans-Neptunian objects remain elusive within the framework of this evolutionary picture. In this work, we show that the existence of a distant, Neptune-like planet that resides on an eccentric and mildly inclined orbit fully accounts for the anomalous component the trans-Neptunian orbital distribution. Adopting the same parameters for Planet Nine as those previously invoked to explain the clustering of distant Kuiper belt orbits in physical space, we carry out a series of numerical experiments which elucidate the physical process though which highly inclined Kuiper belt objects with semi-major axes smaller than 100 AU are generated. The identified dynamical pathway demonstrates that enigmatic members of the Kuiper belt such as Drac and Niku are derived from the extended scattered disk of the solar system.

Friday, October 21, 2016

Doubts About Planet Nine?

Consequences of a Distant Massive Planet on the Large Semi-major Axis Trans-Neptunian Objects

Authors:

Shankman et al

Abstract:

We explore the distant giant planet hypothesis by integrating the large semi-major axis, large pericenter Trans-Neptunian Objects (TNOs) in the presence of the giant planets and an external perturber whose orbit is consistent with the proposed distant, eccentric, and inclined giant planet, so called planet 9. We find that TNOs with semi-major axes greater than 250 au experience some longitude of perihelion shepherding, but that a generic outcome of such evolutions is that the TNOs evolve to larger pericenter orbits, and commonly get raised to retrograde inclinations. This pericenter and inclination evolution requires a massive disk of TNOs (tens of M$_\Earth$) in order to explain the detection of the known sample today. Some of the highly inclined orbits produced by the examined perturbers will be inside of the orbital parameter space probed by prior surveys, implying a missing signature of the 9th planet scenario. The distant giant planet scenarios explored in this work do not reproduce the observed signal of simultaneous clustering in argument of pericenter, longitude of the ascending node, and longitude of perihelion in the region of the known TNOs.

Shaping of the inner Oort cloud by Planet Nine


Authors:

Michaely et al

Abstract:

We present a numerical calculation of the dynamical interaction between the proposed Planet Nine and an initially thin circular debris disk around the Sun for 4Gyr, accounting the secular perturbation of the four giant planets. We show that Planet Nine governs the dynamics in between 1000-5000AU and forms spherical structure in the inner part (~1000AU) surrounded by an inclined disk aligned to its orbital plane. This structure is the outcome of mean motion resonances and secular interaction with Planet Nine. We compare the morphology of this structure with the outcome from a fly-by encounter of a star with the debris disk and show distinct differences between the two scenarios. We predict that this structure serves as a source of comets and calculate the resulting comet production rate to be detectable.

Friday, September 09, 2016

The Hunt for Planet Nine Finds Multiple Outer Solar System Objects

In the race to discover a proposed ninth planet in our Solar System, Carnegie's Scott Sheppard and Chadwick Trujillo of Northern Arizona University have observed several never-before-seen objects at extreme distances from the Sun in our Solar System. Sheppard and Trujillo have now submitted their latest discoveries to the International Astronomical Union's Minor Planet Center for official designations. A paper about the discoveries has also been accepted to The Astronomical Journal.

The more objects that are found at extreme distances, the better the chance of constraining the location of the ninth planet that Sheppard and Trujillo first predicted to exist far beyond Pluto (itself no longer classified as a planet) in 2014. The placement and orbits of small, so-called extreme trans-Neptunian objects, can help narrow down the size and distance from the Sun of the predicted ninth planet, because that planet's gravity influences the movements of the smaller objects that are far beyond Neptune. The objects are called trans-Neptunian because their orbits around the Sun are greater than Neptune's.

Friday, September 02, 2016

If Planet Nine Exists, it Could be a 'Disaster' After the Sun Dies

The solar system could be thrown into disaster when the sun dies if the mysterious 'Planet Nine' exists, according to research from the University of Warwick.

Dr Dimitri Veras in the Department of Physics has discovered that the presence of Planet Nine - the hypothetical planet which may exist in the outer Solar System - could cause the elimination of at least one of the giant planets after the sun dies, hurling them out into interstellar space through a sort of 'pinball' effect.

When the sun starts to die in around seven billion years, it will blow away half of its own mass and inflate itself -- swallowing the Earth -- before fading into an ember known as a white dwarf. This mass ejection will push Jupiter, Saturn, Uranus and Neptune out to what was assumed a safe distance.

However, Dr. Veras has discovered that the existence of Planet Nine could rewrite this happy end-ing. He found that Planet Nine might not be pushed out in the same way, and in fact might instead be thrust inward into a death dance with the solar system's four known giant planets -- most notably Uranus and Neptune. The most likely result is ejection from the solar system, forever.

Thursday, August 18, 2016

Could Planet Nine be Causing Solar Obliquity Changes?


Authors:

Lai et al

Abstract:

Bailey et al.~(2016) and Gomes et al.~(2016) recently suggested that the 6 degree misalignment between the Sun's rotational equator and the orbital plane of the major planets may be produced by the forcing from the hypothetical Planet Nine on an inclined orbit. Here we present a simple but accurate calculation of the effect, which provides a clear description of how the Sun's spin orientation depends on the property of Planet Nine in this scenario.

Friday, July 22, 2016

The Inclination of the Gas Giants in the Solar System Constrains Planet Nine

The inclination of the planetary system relative to the solar equator may be explained by the presence of Planet 9

Authors:

Gomes et al

Abstract:

We evaluate the effects of a distant planet, commonly known as planet 9, on the dynamics of the giant planets of the Solar System. We find that, given the large distance of planet 9, the dynamics of the inner giant planets can be decomposed into a classic Lagrange-Laplace dynamics relative to their own invariant plane (the plane orthogonal to their total angular momentum vector) and a slow precession of said plane relative to the total angular momentum vector of the Solar System, including planet 9. Under some specific configurations for planet 9, this precession can explain the current tilt of approximately 6 degrees between the invariant plane of the giant planets and the solar equator. An analytical model is developed to map the evolution of the inclination of the inner giant planets' invariant plane as a function of the planet 9's mass, inclination, eccentricity and semimajor axis, and some numerical simulations of the equations of motion of the giant planets and planet 9 are performed to validate our analytical approach. The longitude of the ascending node of planet 9 is found to be linked to the longitude of the ascending node of the giant planets' invariant plane, which also constrain the longitude of the node of planet 9 on the ecliptic. Some of the planet 9 configurations that allow explaining the current solar tilt are compatible with those proposed to explain the orbital confinement of the most distant Kuiper belt objects. Thus, this work on the one hand gives an elegant explanation for the current tilt between the invariant plane of the inner giant planets and the solar equator and, on the other hand, adds new constraints to the orbital elements of planet 9.

Thursday, July 21, 2016

Would the Presence of Planet Nine Explain the Solar Rotation/ Plane of the Ecliptic Misalignment?

Solar Obliquity Induced by Planet Nine

Authors:

Bailey et al

Abstract:

The six-degree obliquity of the sun suggests that either an asymmetry was present in the solar system's formation environment, or an external torque has misaligned the angular momentum vectors of the sun and the planets. However, the exact origin of this obliquity remains an open question. Batygin & Brown (2016) have recently shown that the physical alignment of distant Kuiper Belt orbits can be explained by a 5-20 Earth-mass planet on a distant, eccentric, and inclined orbit, with an approximate perihelion distance of ~250 AU. Using an analytic model for secular interactions between Planet Nine and the remaining giant planets, here we show that a planet with similar parameters can naturally generate the observed obliquity as well as the specific pole position of the sun's spin axis, from a nearly aligned initial state. Thus, Planet Nine offers a testable explanation for the otherwise mysterious spin-orbit misalignment of the solar system.

Wednesday, July 20, 2016

Is There a Planet Nine *AND* Ten?!


Authors:

de la Fuente Marcos et al

Abstract:

The distribution of the orbital elements of the known extreme trans-Neptunian objects or ETNOs has been found to be statistically incompatible with that of an unperturbed asteroid population following heliocentric or, better, barycentric orbits. Such trends, if confirmed by future discoveries of ETNOs, strongly suggest that one or more massive perturbers could be located well beyond Pluto. Within the trans-Plutonian planets paradigm, the Planet Nine hypothesis has received much attention as a robust scenario to explain the observed clustering in physical space of the perihelia of seven ETNOs which also exhibit clustering in orbital pole position. Here, we revisit the subject of clustering in perihelia and poles of the known ETNOs using barycentric orbits, and study the visibility of the latest incarnation of the orbit of Planet Nine applying Monte Carlo techniques and focusing on the effects of the apsidal anti-alignment constraint. We provide visibility maps indicating the most likely location of this putative planet if it is near aphelion. We also show that the available data suggest that at least two massive perturbers are present beyond Pluto.

Tuesday, June 14, 2016

More Evidence for Planet Nine in Trans Neptunian Objects


In the race towards the discovery of a ninth planet in our solar system, scientists from around the world strive to calculate its orbit using the tracks left by the small bodies that move well beyond Neptune. Now, astronomers from Spain and Cambridge University have confirmed, with new calculations, that the orbits of the six extreme trans-Neptunian objects that served as a reference to announce the existence of Planet Nine are not as stable as it was thought.

At the beginning of this year, the astronomers K. Batygin and M. Brown from the California Institute of Technology (Caltech, USA) announced that they had found evidence of the existence of a giant planet with a mass ten times larger than Earth's in the confines of the Solar System. Moving in an unusually elongated orbit, the mysterious planet will take between 10,000 and 20,000 years to complete one revolution around the Sun.

In order to arrive at this conclusion, Batygin and Brown run computer simulations with input data based on the orbits of six extreme trans-Neptunian objects (ETNOs). Specifically, these ETNOs are: Sedna, 2012 VP113, 2004 VN112, 2007 TG422, 2013 RF98 and 2010 GB174.

Now, however, brothers Carlos and Raúl de la Fuente Marcos, two freelance Spanish astronomers, together with scientist Sverre J. Aarseth from the Institute of Astronomy of the University of Cambridge (United Kingdom), have considered the question the other way around: How would the orbits of these six ETNOs evolve if a Planet Nine such as the one proposed by K. Batygin and M. Brown really did exist? The answer to this important question has been published in the journal Monthly Notices of the Royal Astronomical Society (MNRAS).

Wednesday, May 25, 2016

A Ninth Planet Would Produce a Distinctly Different Distant Kuiper Belt


Authors:

Lawler et al

Abstract:

The orbital element distribution of trans-Neptunian objects (TNOs) with large pericenters has been suggested to be influenced by the presence of an undetected, large planet at 200 or more AU from the Sun. We perform 4 Gyr N-body simulations with the currently known Solar System planetary architecture, plus a 10 Earth mass planet with similar orbital parameters to those suggested by Batygin and Brown (2016) or Trujillo and Sheppard (2014), and a hundred thousand test particles in an initial planetesimal disk. We find that including a distant superearth-mass ninth planet produces a substantially different orbital distribution for the scattering and detached TNOs, raising the pericenters and inclinations of moderate semimajor axis (50 less than a less than 500 AU) objects. We test whether this signature is detectable via a simulator with the observational characteristics of four precisely characterized TNO surveys. We find that the qualitatively very distinct Solar System models that include a ninth planet are essentially observationally indistinguishable from an outer Solar System produced solely by the four giant planets. We also find that the mass of the Kuiper Belt's current scattering and detached populations is required be 3-10 times larger in the presence of an additional planet. Wide-field, deep surveys targeting inclined high-pericenter objects will be required to distinguish between these different scenarios.

Wednesday, May 11, 2016

What Mechanism is Causing the Kuiper Belt Objects by Planet Nine?

Orbital clustering of distant Kuiper Belt Objects by hypothetical Planet 9. Secular or resonant ?

Authors:

Beust et al

Abstract:

Statistical analysis of the orbits of distant Kuiper Belt Objects (KBOs) have led to suggest that an additional planet should reside in the Solar System. According to recent models, the secular action of this body should cause orbital alignment of the KBOs. It was recently claimed that the KBOs concerned by this dynamics are presumably trapped in mean motion resonances with the suspected planet. I reinvestigate here the secular model underlying this idea. The original analysis was done expanding and truncating the secular Hamiltonian. I show that this is inappropriate here, as the series expansion is not convergent. I present a study based on numerical computation of the Hamiltonian with no expansion. I show in phase-space diagrams the existence of apsidally anti-aligned, high eccentricity libration islands that were not present in the original modelling, but that match numerical simulations. These island were claimed to correspond to bodies trapped in mean-motion resonances with the hypothetical planet, and match the characteristics of the distant KBOs observed. My main result is that regular secular dynamics can account for the anti-aligned particles itself as well as mean-motion resonances. I also perform a semi-analytical study of resonant motion and show that some resonance are actually capable of producing the same libration islands. I discuss then the relative importance of both mechanisms.

Tuesday, May 03, 2016

Planet Nine is an Anomaly

Earlier this year scientists presented evidence for Planet Nine, a Neptune-mass planet in an elliptical orbit 10 times farther from our Sun than Pluto. Since then theorists have puzzled over how this planet could end up in such a distant orbit.

New research by astronomers at the Harvard-Smithsonian Center for Astrophysics (CfA) examines a number of scenarios and finds that most of them have low probabilities. Therefore, the presence of Planet Nine remains a bit of a mystery.

"The evidence points to Planet Nine existing, but we can't explain for certain how it was produced," says CfA astronomer Gongjie Li, lead author on a paper accepted for publication in the Astrophysical Journal Letters.

Planet Nine circles our Sun at a distance of about 40 billion to 140 billion miles, or 400 - 1500 astronomical units. (An astronomical unit or A.U. is the average distance of the Earth from the Sun, or 93 million miles.) This places it far beyond all the other planets in our solar system. The question becomes: did it form there, or did it form elsewhere and land in its unusual orbit later?

Wednesday, April 27, 2016

Search of ALLWise Data Does NOT Find Planet Nine

The Hunt for Planet Nine: Atmosphere, Spectra, Evolution, and Detectability

Authors:

Fortney et al

Abstract:

We investigate the physical characteristics of the Solar System's proposed Planet Nine using modeling tools with a strong heritage in studying Uranus and Neptune. For a range of plausible masses and interior structures, we find upper limits on the intrinsic Teff, from ~35-50 K for masses of 5-20 M_Earth. Possible planetary radii could readily span from 3 to 6 R_Earth depending on the mass fraction of any H/He envelope. We model the atmospheric temperature structure and spectra. Given its cold temperature, the planet encounters significant methane condensation, which dramatically alters the atmosphere away from simple Neptune-like expectations. We find the atmosphere is strongly depleted in molecular absorption at visible wavelengths, suggesting a Rayleigh scattering atmosphere with a high geometric albedo of 0.75. We highlight two diagnostics for the atmosphere's temperature structure, the first being the value of the methane mixing ratio above the methane cloud. The second is the wavelength at which cloud scattering can be seen, which yields the cloud-top pressure. Surface reflection may be seen if the atmosphere is thin. Due to collision-induced opacity of H2 in the infrared, the planet would be extremely blue (instead of red) in the shortest wavelength WISE colors if methane is depleted, and would, in some cases, exist on the verge of detectability by WISE. For a range of models, thermal fluxes from ~3-5 microns are ~20 orders of magnitude larger than blackbody expectations. We report a search of the AllWISE Source Catalog for Planet Nine, but find no detection.