Authors:Mallama et alAbstract:Complete sets of reference magnitudes in all 7 Johnson-Cousins bands (U, B, V, R, I, RC and IC) and the 5 principal Sloan bands (u’, g’, r’, i', and z’) are presented for the 8 planets. These data are accompanied by illumination phase functions and other formulas which characterize the instantaneous brightness of the planets. The main source of Johnson-Cousins magnitudes is a series of individualized photometric studies reported in recent years. Gaps in that dataset were filled with magnitudes synthesized in this study from published spectrophotometry. The planetary Sloan magnitudes, which are established here for the first time, are an average of newly recorded Sloan filter photometry, synthetic magnitudes and values transformed from the Johnson-Cousins system. Geometric albedos derived from these two sets of magnitudes are consistent within each photometric system and between the systems for all planets and in all bands. This consistency validates the albedos themselves as well as the magnitudes from which they were derived. In addition, a quantity termed the delta stellar magnitude is introduced to indicate the difference between the magnitude of a planet and that of its parent star. A table of these delta values for exo-planets possessing a range of physical characteristics is presented. The delta magnitudes are for phase angle 90° where a planet is near the greatest apparent separation from its star. This quantity may be useful in exo-planet detection and observation strategies when an estimate of the signal-to-noise ratio is needed. Likewise, the phase curves presented in this paper can be used for characterizing exo-planets. Finally, magnitudes for the proposed Planet Nine are estimated, and we note that P9 may be especially faint at red and near-IR wavelengths.
Friday, November 18, 2016
Planet Nine may be Especially Faint in the red and Infrared
Labels:
astronomy,
exoplanets,
kuiper belt,
outer solar system,
planet x
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment