New fundamental particles aren’t found only at Fermilab and at other particle accelerators. They also can be found hiding in plain pieces of ceramic, scientists at the University of Illinois report.
The newly formulated particle is a boson and has a charge of 2e, but does not consist of two electrons, the scientists say. The particle arises from the strong, repulsive interactions between electrons, and provides another piece of the high-temperature superconductivity puzzle.
Twenty-one years ago, superconductivity at high temperatures was discovered in copper-oxide ceramics (cuprates). Existing explanations of superconductivity proved inadequate because, unlike low-temperature superconductors, which are metals, the parent materials from which all high-temperature superconductors arise are insulators.
Now, a new theory suggests something has been overlooked. “Hidden in the copper-oxide materials is a new particle, a boson with a charge of 2e,” said Philip Phillips, a professor of physics at Illinois.
Surprisingly, this boson is not formed from the elementary excitations – that is, electrons and ions. Instead, the particle emerges as a remnant of the strong interactions between electrons in the normal state.
OoOoOOoooo!
(nice potshot at the accelerator labs there)
No comments:
Post a Comment