Not long ago, it would have taken several years to run a high-resolution simulation on a global climate model. But using some of the most powerful supercomputers now available, Lawrence Berkeley National Laboratory (Berkeley Lab) climate scientist Michael Wehner was able to complete a run in just three months.
What he found was that not only were the simulations much closer to actual observations, but the high-resolution models were far better at reproducing intense storms, such as hurricanes and cyclones. The study, "The effect of horizontal resolution on simulation quality in the Community Atmospheric Model, CAM5.1," has been published online in the Journal of Advances in Modeling Earth Systems.
"I've been calling this a golden age for high-resolution climate modeling because these supercomputers are enabling us to do gee-whiz science in a way we haven't been able to do before," said Wehner, who was also a lead author for the recent Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). "These kinds of calculations have gone from basically intractable to heroic to now doable."
Using version 5.1 of the Community Atmospheric Model, developed by the Department of Energy (DOE) and the National Science Foundation (NSF) for use by the scientific community, Wehner and his co-authors conducted an analysis for the period 1979 to 2005 at three spatial resolutions: 25 km, 100 km, and 200 km. They then compared those results to each other and to observations.
One simulation generated 100 terabytes of data, or 100,000 gigabytes. The computing was performed at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC), a DOE Office of Science User Facility. "I've literally waited my entire career to be able to do these simulations," Wehner said.
The higher resolution was particularly helpful in mountainous areas since the models take an average of the altitude in the grid (25 square km for high resolution, 200 square km for low resolution). With more accurate representation of mountainous terrain, the higher resolution model is better able to simulate snow and rain in those regions.
"High resolution gives us the ability to look at intense weather, like hurricanes," said Kevin Reed, a researcher at the National Center for Atmospheric Research (NCAR) and a co-author on the paper. "It also gives us the ability to look at things locally at a lot higher fidelity. Simulations are much more realistic at any given place, especially if that place has a lot of topography."
link.
No comments:
Post a Comment