Tuesday, January 07, 2014

Gemini Planet Imager has First Light



After nearly a decade of development, construction, and testing, the world's most advanced instrument for directly imaging and analyzing planets around other stars is pointing skyward and collecting light from distant worlds.

The instrument, called the Gemini Planet Imager (GPI), was designed, built, and optimized for imaging faint planets next to bright stars and probing their atmospheres. It will also be a powerful tool for studying dusty, planet-forming disks around young stars. It is the most advanced such instrument to be deployed on one of the world's biggest telescopes – the 8-meter Gemini South telescope in Chile.

"Even these early first-light images are almost a factor of 10 better than the previous generation of instruments. In one minute, we are seeing planets that used to take us an hour to detect," says Bruce Macintosh of the Lawrence Livermore National Laboratory who led the team that built the instrument.

GPI detects infrared (heat) radiation from young Jupiter-like planets in wide orbits around other stars, those equivalent to the giant planets in our own Solar System not long after their formation. Every planet GPI sees can be studied in detail.

"Most planets that we know about to date are only known because of indirect methods that tell us a planet is there, a bit about its orbit and mass, but not much else," says Macintosh. "With GPI we directly image planets around stars – it's a bit like being able to dissect the system and really dive into the planet's atmospheric makeup and characteristics."

GPI carried out its first observations last November – during an extremely trouble-free debut for an extraordinarily complex astronomical instrument the size of a small car. "This was one of the smoothest first-light runs Gemini has ever seen" says Stephen Goodsell, who manages the project for the observatory.

For GPI's first observations, the team targeted previously known planetary systems, including the well-known Beta Pictoris system; in it GPI obtained the first-ever spectrum of the very young planet Beta Pictoris b. The first-light team also used the instrument's polarization mode – which can detect starlight scattered by tiny particles – to study a faint ring of dust orbiting the very young star HR4796A. With previous instruments, only the edges of this dust ring, (which may be the debris remaining from planet formation), could be seen, but with GPI astronomers can follow the entire circumference of the ring.

Although GPI was designed to look at distant planets, it can also observe objects in our Solar System. The accompanying test images of Jupiter's moon Europa, for example, can allow scientists to map changes in the satellite's surface composition. The images were released today at the 223rd meeting of the American Astronomical Society in Washington DC.

"Seeing a planet close to a star after just one minute, was a thrill, and we saw this on only the first week after the instrument was put on the telescope!" says Fredrik Rantakyro a Gemini staff scientist working on the instrument. "Imagine what it will be able to do once we tweak and completely tune its performance."

No comments: