Jan Scheuermann is not your average experimental subject. Diagnosed with spinocerebellar degeneration, she is only able to move her head and neck. The paralysis, which began creeping over her muscles in 1996, has been devastating in many ways. Yet two years ago she seized an opportunity to turn her personal liability into an extraordinary asset for neuroscience. In 2012 Scheuermann elected to undergo brain surgery to implant two arrays of electrodes on her motor cortex, a band of tissue on the surface of the brain.
She did so as a volunteer in a multi-year study at the University of Pittsburgh to develop a better brain-computer interface. When she visits the lab, researchers hook up her brain to a robotic arm and hand, which she practices moving using her thoughts alone. The goal is to eventually allow other paralyzed individuals to regain function by wiring up their brains directly to a computer or prosthetic limb.
The electrodes in her head record the firing patterns of about 150 of her neurons. Specific patterns of neuronal activity encode her desire to perform different movements, such as swinging the arm to the left or clasping the fingers around a cup. Two thick cables relay the data from her neurons to a computer, where software can identify Scheuermann’s intentions. The computer can then issue appropriate commands to move the robotic limb.
On a typical workday, Jan Scheuermann arrives at the university around 9:15 am. Using her chin, she maneuvers her electric wheelchair into a research lab headed by neuroscientist Andrew Schwartz and settles in for a day of work. Scientific American Mind spoke to Scheuermann to learn more about her experience as a self-proclaimed “guinea pig extraordinaire.”
link.
No comments:
Post a Comment