The fluffy core of Enceladus
Author:
Roberts
Abstract:
Enceladus is well known for its young south polar terrain, observed by Cassini to emit several GW of heat as well as plumes of vapor and ice. The source of this energy is believed to be tidal dissipation. However, the observed south polar heat flux cannot be sustained over the age of the Solar System. Furthermore, thermal evolution models suggest that any global subsurface ocean should freeze on a timescale of tens to hundreds of My, sharply reducing future tidal heating, unless large amounts of antifreeze are present in the ocean. Here I propose an alternative internal structure for Enceladus, in which the silicate core is fragmented, and that the tidal deformation of the core may be partially controlled by interstitial ice. I find that fragmentation of the core increases tidal dissipation by a factor of 20, consistent with the long-term dynamically sustainable level, even when the interior is completely frozen, but only if the interior starts out warm and tidal heating is strong from the beginning. If this is not the case, radioactive heating will be insufficient to prevent the interior from cooling. Although an ocean need not be present in order for the interior to experience significant tidal heating, all models that dissipate enough heat to prevent runaway cooling are also warm enough to have an ocean. Tidal dissipation in the weak core provides an additional source of heat that may prevent a global subsurface ocean from freezing.
Friday, July 10, 2015
Does Enceladus Have a "Fluffy," Fragmented Core?
Labels:
cassini,
enceladus,
icy moons,
internal structure,
planetary science,
saturnian moons,
saturnian system
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment