Two hundred and fifty-two million years ago, a series of Siberian volcanoes erupted and sent the Earth into the greatest mass extinction of all time. As a result of this mass extinction, known as the Permo-Triassic Mass Extinction, billions of tons of carbon were propelled into the atmosphere, radically altering the Earth's climate. Yet, some animals thrived in the aftermath and scientists now know why.
In a new study published in Scientific Reports, a team of international paleontologists, including postdoctoral scholar Adam Huttenlocker of the Natural History Museum of Utah at the University of Utah, demonstrate that ancient mammal relatives known as therapsids were suited to the drastic climate change by having shorter life expectancies and would have had a better chance of success by breeding at younger ages than their predecessors.
The research team studied growth patterns in therapsids from the South African Karoo Basin, a paleontologically significant area which preserves a wide range of fossils from the Permian to the Early Jurassic, or 300-180 million years ago.
By examining their bone microstructure before and after the extinction boundary, Huttenlocker and his colleagues were able to study how growth patterns in therapsids were affected by the extinction. By studying body size distributions in particularly abundant species from the Permian and Triassic, the team was able to interpret shifts in size class structure and in rates of survivorship.
"Therapsid fossils like Lystrosaurus are important because they teach us about the resilience of our own extinct relatives in the face of extinction, and provide clues to which traits confered success on lineages during this tubulent time. Lystrosaurus was particularly prolific, making it possible to build a large dataset and to sacrifice some specimens for histology to study the growth patterns recorded in its bones," said Huttenlocker, one of the paper's authors.
"Before the Permo-Triassic extinction, the famous therapsid Lystrosaurus had a life span of about 13 or 14 years based on the record of growth preserved in their bones," said Field Museum paleontologist Ken Angielczyk, another one of the paper's authors. "Yet, nearly all of the Lystrosaurus specimens we find from after the extinction are only 2¬-3 years old. This implies that they must have been breeding when they were still [relatively young] themselves."
This adjustment in life history also meant a physical change for Lystrosaurus. Before the mass extinction, this creature would have been a couple meters long and weighed hundreds of pounds—about the size of a pygmy hippo. Post-extinction, its size dropped to that of a large dog, in large part due to its altered lifespan. Yet, these adaptations seemed to pay off for Lystrosaurus. Ecological simulations show that by breeding younger, Lystrosaurus could have increased its chance of survival by 40% in the unpredictable environments that existed in the aftermath of the extinction.
Thursday, April 07, 2016
Lystrosaurus LIved Fast, Died Young After Permian Extinction
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment