Tuesday, March 10, 2009

Ecomorphological Selectivity Among Marine Teleost Fishes During the KT Extinction

Matt Friedman

Committee on Evolutionary Biology, University of Chicago, 1025 East 57th Street, Chicago, IL 60637 and Department of Geology, Field Museum, 1400 South Lake Shore Drive, Chicago, IL 60605


Abstract

Despite the attention focused on mass extinction events in the fossil record, patterns of extinction in the dominant group of marine vertebrates—fishes—remain largely unexplored. Here, I demonstrate ecomorphological selectivity among marine teleost fishes during the end-Cretaceous extinction, based on a genus-level dataset that accounts for lineages predicted on the basis of phylogeny but not yet sampled in the fossil record. Two ecologically relevant anatomical features are considered: body size and jaw-closing lever ratio. Extinction intensity is higher for taxa with large body sizes and jaws consistent with speed (rather than force) transmission; resampling tests indicate that victims represent a nonrandom subset of taxa present in the final stage of the Cretaceous. Logistic regressions of the raw data reveal that this nonrandom distribution stems primarily from the larger body sizes of victims relative to survivors. Jaw mechanics are also a significant factor for most dataset partitions but are always less important than body size. When data are corrected for phylogenetic nonindependence, jaw mechanics show a significant correlation with extinction risk, but body size does not. Many modern large-bodied, predatory taxa currently suffering from overexploitation, such billfishes and tunas, first occur in the Paleocene, when they appear to have filled the functional space vacated by some extinction victims.


A little more data...

No comments: