On the Origin of Pluto's Small Satellites by Resonant Transport
Authors:
Cheng et al
Abstract:
The orbits of Pluto's four small satellites (Styx, Nix, Kerberos, and Hydra) are nearly circular and coplanar with the orbit of the large satellite Charon, with orbital periods nearly in the ratios 3:1, 4:1, 5:1, and 6:1 with Charon's orbital period. These properties suggest that the small satellites were created during the same impact event that placed Charon in orbit and had been pushed to their current positions by being locked in mean-motion resonances with Charon as Charon's orbit was expanded by tidal interactions with Pluto. Using the Pluto-Charon tidal evolution models developed by Cheng et al. (2014), we show that stable capture and transport of a test particle in multiple resonances at the same mean-motion commensurability is possible at the 5:1, 6:1, and 7:1 commensurabilities, if Pluto's zonal harmonic J2P=0. However, the test particle has significant orbital eccentricity at the end of the tidal evolution of Pluto-Charon in almost all cases, and there are no stable captures and transports at the 3:1 and 4:1 commensurabilities. Furthermore, a non-zero hydrostatic value of J2P destroys the conditions necessary for multiple resonance migration. Simulations with finite but minimal masses of Nix and Hydra also fail to yield any survivors. We conclude that the placing of the small satellites at their current orbital positions by resonant transport is extremely unlikely.
Thursday, July 10, 2014
Where did Pluto's Small Moons Come From?
Labels:
icy moons,
impacts,
kupier belt,
moons,
orbital resonance,
outer solar system,
planetary science,
pluto
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment