With the completion of the sequencing and analysis of the gibbon genome, scientists now know more about why this small ape has a rapid rate of chromosomal rearrangements, providing information that broadens understanding of chromosomal biology.
Chromosomes, essentially the packaging that encases the genetic information stored in the DNA sequence, are fundamental to cellular function and the transmission of genetic information from one generation to the next. Chromosome structure and function is also intimately related to human genetic diseases, especially cancer.
The sequence and analysis of the gibbon genome (all the chromosomes) was published today in the journal Nature and led by scientists at Oregon Health & Science University, the Baylor College of Medicine Human Genome Sequencing Center and the Washington University School of Medicine's Genome Institute.
"Everything we learn about the genome sequence of this particular primate and others analyzed in the recent past helps us to understand human biology in a more detailed and complete way," said Dr. Jeffrey Rogers, associate professor in the Human Genome Sequencing Center at Baylor and a lead author on the report. "The gibbon sequence represents a branch of the primate evolutionary tree that spans the gap between the Old World Monkeys and great apes and has not yet been studied in this way. The new genome sequence provides important insight into their unique and rapid chromosomal rearrangements."
link.
No comments:
Post a Comment