Tuesday, December 23, 2014

Evidence of Global Warming & Two Stage Glacial Retreat at Martian South Pole During Late Noachian/Early Hesperian

Late Noachian and early Hesperian ridge Systems in the South Circumpolar Dorsa Argentea Formation, Mars: Evidence for Two Stages of Melting of an Extensive Late Noachian Ice Sheet


Kress et al


The Dorsa Argentea Formation (DAF), extending from 270°–100° E and 70°–90° S, is a huge circumpolar deposit surrounding and underlying the Late Amazonian South Polar Layered Deposits (SPLD) of Mars. Currently mapped as Early-Late Hesperian in age, the Dorsa Argentea Formation has been interpreted as volatile-rich, possibly representing the remnants of an ancient polar ice cap. Uncertain are its age (due to the possibility of poor crater retention in ice-related deposits), its mode of origin, the origin of the distinctive sinuous ridges and cavi that characterize the unit, and its significance in the climate history of Mars. In order to assess the age of activity associated with the DAF, we examined the ridge populations within the Dorsa Argentea Formation, mapping and characterizing seven different ridge systems (composed of nearly 4,000 ridges covering a total area of ~300,000 km2, with a cumulative length of ridges of ~51,000 km) and performing crater counts on them using the method of buffered crater counting to determine crater retention ages of the ridge populations. We examined the major characteristics of the ridge systems and found that the majority of them were consistent with an origin as eskers, sediment-filled subglacial drainage channels. Ridge morphologies reflect both distributed and channelized esker systems, and evidence is also seen that some ridges form looping moraine-like termini distal to some distributed systems. The ridge populations fall into two age groups: ridge systems between 270° and 0° E date to the Early Hesperian, but to the east, the Promethei Planum and the Chasmata ridge systems date to the Late Noachian. Thus, these ages, and esker and moraine-like morphologies, support the interpretation that the DAF is a remnant ice sheet deposit, and that the esker systems represent evidence of significant melting and drainage of meltwater from portions of this ice sheet, thus indicating at least some regions and/or periods of wet-based glaciation. The Late Noachian and Early Hesperian ages of the ridge systems closely correspond to the ages of valley network/open basin lake systems, representing runoff, drainage and storage of liquid water in non-polar regions of the surface of Mars. Potential causes of such wet-based conditions in the DAF include: 1) top-down melting due to atmospheric warming, 2) enhanced snow and ice accumulation and raising of the melting isotherm to the base of the ice sheet, or 3) basal melting associated with intrusive volcanism (volcano-ice interactions). The early phase of melting is closely correlated in time with valley network formation and thus may be due to global atmospheric warming, while the later phase of melting may be linked to Early Hesperian global volcanism and specific volcano-ice interactions (table mountains) in the DAF. Crater ages indicate that these wet-based conditions ceased by the Late Hesperian, and that further retreat of the DAF to its present configuration occurred largely through sublimation, not melting, thus preserving the extensive ridge systems. MARSIS radar data suggest that significant areas of layered, potentially ice-rich parts of the Dorsa Argentea Formation remain today.

No comments: