Today, Madagascar is home to a mosaic of different habitats--a lush rainforest in the east and a dry deciduous forest in the west, separated by largely open highlands. But the island off the southeast coast of Africa hasn't always been like that--a new study published in the Proceedings of the National Academy of Sciences announces that these two ecologically different portions of the island were once linked by a patchwork of forested areas. And to figure it out, the scientists analyzed the DNA of some of the cutest animals on earth--mouse lemurs.
"For a long time, scientists weren't sure how or why Madagascar's biogeography changed in very recent geological time, specifically at the key period around when humans arrived on the island a few thousand years ago. It has been proposed they heavily impacted the Central Highland forests," says Steve Goodman, MacArthur Field Biologist at The Field Museum in Chicago, who co-authored the study and has been studying Malagasy animals for thirty years. "This study shows the landscape was changing thousands of years before humans arrived."
So scientists wanted to learn about the history of Madagascar's landscape--why study mouse lemurs? The tiny primates are the perfect combination of fast-breeding, hardy, and unique to the island. "They reach reproductive maturity within a year, and that means that a lot of generations are produced very quickly," explains Goodman. "That enables us to see evolution at work faster than we would in an animal that took, say, five years to first reproduce." The lemurs, which are found only on Madagascar, live across much of the island, even forested areas that have been damaged by humans. That means that for scientists studying how the island changed over time, mouse lemurs are a jackpot. "The mouse lemurs are forest dependent--as the forest changes, they change. By studying how mouse lemurs evolved in different areas of the island, we're able to glimpse how the island itself changed and learn whether those changes were caused by humans," says Goodman.
By analyzing DNA from five different mouse lemur species, the scientists were able to tell when the different kinds of lemurs branched out from each other. "We were able to characterize tens of thousands of changes in the genomes of mouse lemurs that are now isolated and form separate species. By analyzing these DNA changes, we were able to understand when the species diverged from each other, and by inference, identify the ecological forces that might have driven them apart," says Anne Yoder, Director of the Duke University Lemur Center and lead author on the paper.
link.
No comments:
Post a Comment