First glimpse into Lower Jurassic deep-sea biodiversity: in situ diversification and resilience against extinction
Authors:
Thuy et al
Abstract:
Owing to the assumed lack of deep-sea macrofossils older than the Late Cretaceous, very little is known about the geological history of deep-sea communities, and most inference-based hypotheses argue for repeated recolonizations of the deep sea from shelf habitats following major palaeoceanographic perturbations. We present a fossil deep-sea assemblage of echinoderms, gastropods, brachiopods and ostracods, from the Early Jurassic of the Glasenbach Gorge, Austria, which includes the oldest known representatives of a number of extant deep-sea groups, and thus implies that in situ diversification, in contrast to immigration from shelf habitats, played a much greater role in shaping modern deep-sea biodiversity than previously thought. A comparison with coeval shelf assemblages reveals that, at least in some of the analysed groups, significantly more extant families/superfamilies have endured in the deep sea since the Early Jurassic than in the shelf seas, which suggests that deep-sea biota are more resilient against extinction than shallow-water ones. In addition, a number of extant deep-sea families/superfamilies found in the Glasenbach assemblage lack post-Jurassic shelf occurrences, implying that if there was a complete extinction of the deep-sea fauna followed by replacement from the shelf, it must have happened before the Late Jurassic.
Tuesday, May 27, 2014
First Glimpse at Lower Jurassic Benthic Paleodiversity
Labels:
austria,
benthic zone,
fossils,
Jurassic,
lower jurassic,
paleodiversity,
paleoecology,
paleontology,
paleooceans
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment