Cryovolcanism Took Place on Ceres Since the Start of the Triassic
Cryovolcanism on Ceres
Authors:
Ruesch et al
Abstract:
INTRODUCTION
Classic volcanism prevalent on terrestrial planets and volatile-poor protoplanets, such as asteroid Vesta, is based on silicate chemistry and is often expressed by volcanic edifices (unless erased by impact bombardment). In ice-rich bodies with sufficiently warm interiors, cryovolcanism involving liquid brines can occur. Smooth plains on some icy satellites of the outer solar system have been suggested as possibly cryovolcanic in origin. However, evidence for cryovolcanic edifices has proven elusive. Ceres is a volatile-rich dwarf planet with an average equatorial surface temperature of ~160 K. Whether this small (~940 km diameter) body without tidal dissipation could sustain cryovolcanism has been an open question because the surface landforms and relation to internal activity were unknown.
RATIONALE
The Framing Camera onboard the Dawn spacecraft has observed >99% of Ceres’ surface at a resolution of 35 m/pixel at visible wavelengths. This wide coverage and resolution were exploited for geologic mapping and age determination. Observations with a resolution of 135 m/pixel were obtained under several different viewing geometries. The stereo-photogrammetric method applied to this data set allowed the calculation of a digital terrain model, from which morphometry was investigated. The observations revealed a 4-km-high topographic relief, named Ahuna Mons, that is consistent with a cryovolcanic dome emplacement.
RESULTS
The ~17-km-wide and 4-km-high Ahuna Mons has a distinct size, shape, and morphology. Its summit topography is concave downward, and its flanks are at the angle of repose. The morphology is characterized by (i) troughs, ridges, and hummocky areas at the summit, indicating multiple phases of activity, such as extensional fracturing, and (ii) downslope lineations on the flanks, indicating rockfalls and accumulation of slope debris. These morphometric and morphologic observations are explained by the formation of a cryovolcanic dome, which is analogous to a high-viscosity silicic dome on terrestrial planets. Models indicate that extrusions of a highly viscous melt-bearing material can lead to the buildup of a brittle carapace at the summit, enclosing a ductile core. Partial fracturing and disintegration of the carapace generates slope debris, and relaxation of the dome’s ductile core due to gravity shapes the topographic profile of the summit. Modeling of this final phase of dome relaxation and reproduction of the topographic profile requires an extruded material of high viscosity, which is consistent with the mountain’s morphology. We constrained the age of the most recent activity on Ahuna Mons to be within the past 210 ± 30 million years.
CONCLUSION
Cryovolcanic activity during the geologically recent past of Ceres constrains its thermal and chemical history. We propose that hydrated salts with low eutectic temperatures and low thermal conductivities enabled the presence of cryomagmatic liquids within Ceres. These salts are the product of global aqueous alteration, a key process for Ceres’ evolution as recorded by the aqueously altered, secondary minerals observed on the surface.
No comments:
Post a Comment