Saturday, January 09, 2016

A new Model for Enceladus' Structure

A 1-D evolutionary model for icy satellites, applied to Enceladus

Authors:

Malamud et al

Abstract:

We develop a long-term 1-D evolution model for icy satellites that couples multiple processes: water migration and differentiation, geochemical reactions and silicate phase transitions, compaction by self-gravity, and ablation. The model further considers the following energy sources and sinks: tidal heating, radiogenic heating, geochemical energy released by serpentinization or absorbed by mineral dehydration, gravitational energy and insolation, and heat transport by conduction, convection, and advection. We apply the model to Enceladus, by guessing the initial conditions that would render a structure compatible with present-day observations, assuming the initial structure to have been homogeneous. Assuming the satellite has been losing water continually along its evolution, we postulate that it was formed as a more massive, more icy and more porous satellite, and gradually transformed into its present day state due to sustained long-term tidal heating. We consider several initial compositions and evolution scenarios and follow the evolution for the age of the Solar System, testing the present day model results against the available observational constraints. Our model shows the present configuration to be differentiated into a pure icy mantle, several tens of km thick, overlying a rocky core, composed of dehydrated rock at the center and hydrated rock in the outer part. For Enceladus, it predicts a higher rock/ice mass ratio than previously assumed and a thinner ice mantle, compatible with recent estimates based on gravity field measurements. Although, obviously, the model cannot be used to explain local phenomena, it sheds light on the internal structure invoked in explanations of localized features and activities.

No comments: